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Abstract. During the formation of a cellular material, from the nucleation of the cells to the final
polyhedral structure (foam transition), the macroscopic properties of such materials depend on the
evoluting porosity state. Physical characteristics, like imperviousness or electrical conductance,
for instance, are strongly correlated with the mean connectivity of the cells. We will show that
continuous growth law of the radius of the cells can be associated with a generalized Voronoı̈,
which describes the final structure when the cells fill all the space. We found that the critical bond
concentration depends on the disorder of the lattice, defined as the dual of the Voronoı̈ tessellation.
The mean connectivity of the cells in time is found to follow a power law before percolation. The
critical bond concentration when the dynamics of the percolation transition is considered is found
to be different from the critical bond concentration when the bonds are set randomly.

1. Introduction

The expanded glass foam Kerroc‡ [1–4] is a solid foam produced as small beads or bricks.
This material can have a different porosity (close or open partitions between cells), depending
on the thermodynamics conditions (duration and temperature of the expansion process) of their
formation in the oven (figure 1). The structure and physical properties of the glass foam are
macroscopic, thermodynamic parameters, related to the temperature and the time of expansion
by an equation of state [3]. This Kerroc will serve as an illustrative example in this paper to
understand how we calculate the mean bubble connectivity as the time increases.

The percolation transition from impervious to permeable state is characterized by a critical
number of channels (holes) open between bubbles. A hole can be formed only between bubbles
in contact; a contact is defined as a thin interface (film of molten glass) between two bubbles.
From the nucleation of independent bubbles (zero contact), the number of contacts increases
as the bubbles grow in size, because more bubbles touch each other. As soon as there is
contact, there is a finite probability for a hole to be nucleated. This probability depends on the
temperature, on the rate of growth of the two bubbles, on the shape and viscosity of the shared
interface and on the difference of the sizes of the two bubbles [3, 4].

The foaming process begins with independent nucleation (at random in space and time)
and growth of bubbles. Then, bubbles interact through physical contacts (a film separates
two bubbles). The establishment of more and more contacts modifies the physical properties
(electrical, thermal, mechanical,. . . ) of the bulkmaterial. In solid foams, the expansion
process is stopped by quenching the sample. At that time, contacts between bubbles may or

† Present address: Department of Chemical Engineering, Princeton University, Princeton, NJ 08544-5263, USA.
‡ Kerroc® is a trademark of Cernix, 35235 Thorigné-Fouillard, France.
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Figure 1. Schematic phase diagram of solid foam. The thermodynamic variables are the
temperature and the time (duration) of the foaming process. The phases, illustrated by SEM
photographs of Kerroc, are closed cell porosity (impervious material) and open cell porosity (porous
material).

may not have percolated through the system. The percolation threshold corresponds, therefore,
to a critical time in the foaming process, separating two (impervious and permeable) phases
of the solid foam. We treat the foam formation here as a dynamic bond percolation problem.
The relevant parameter is the number of contacts per cell (bubble),

n(t) = 2C(t)/N (1)

at timet , whereC(t) is the total number of contacts ofN bubbles at timet .
At the end of the growth process, when the volume ratio of the initial liquid (molten glass

in Kerroc) to gas phases is less than a few per cent, each bubble is in contact with its neighbours
and has a polyhedral shape. By drawing bonds between the centres of connected bubbles, we
obtain a bond network describing tetrahedral close packing. The final connectivity of the bond
network is also the final number of contacts per bubblenf . Topologically, there is a duality
between the bond network and the polyhedral structure (one bond←→ one contact←→ one
film).

Thus, the mean connectivityn(t), or the mean number of contacts characterizes the
global topology of the solid foam. The connectivity increases during the foaming process,
n(t0) = 0< n(t) < n(tf ) = nf .

To model the dynamics of the foaming process, we use a new numerical technique [4],
which puts growth into Voronöı diagrams. We do not consider here the coarsening of the foam
driven by the diffusion of gas between adjacent cells. Although films are perforated as soon
as a contact occurs, they never rupture and bubbles never coalesce. This ensures that the foam
topology does not evolve after the last contact is established. In this paper, the hole nucleation
probability is set to unity (one contact= one hole), because the physics of the hole nucleation
in curved films is not our concern here. As the number of contacts increases, it reaches a critical
number at and beyond which air or fluid can pass through the foam. This critical number is
the percolation threshold.

2. Growth and tessellations

The foam formation is characterized by the nucleation of bubbles and their growth. In our
numerical approach, we have two parameters: aradius growth lawfor an independent bubble
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Figure 2. Voronöı tessellation (bold lines) and Delaunay triangulation (its dual, thin lines) of a set
of points.

and apackingof spheres (or circles in 2D) with different radii. This packing constitutes
the initial condition for growth. When the spheres (circles) increase according to the radius
growth law, the available space is filled up until it makes a polyhedral partition of the space
(tessellation). When the time is reversed, the initial condition (the initial packing) directly
gives the distribution of nucleation times by shrinking the spheres (circles).

The effective growth of each bubble to pass from the initial condition (close packing) to
final foam (polyhedral cells) is speeded up, in simulation terms, by the use of the Voronoı̈
tessellation technique applied to our packing of spheres (or circles in 2D) (figure 2).

To illustrate the relation between the growth of cells and the Voronoı̈ diagram, consider a
cell i, nucleated at time−ti and a second cellj , nucleated at time−tj , at distancedij from the
first. The cells grow with the same lawRi(t), which we take here to be

Ri(t) = g(t + ti)
α (2)

(it could be any monotonic function). HereRi the radius of the cell at timet , andα is the
growth exponent. The two bubbles touch at contact timetc, defined by

Ri(tc) +Rj(tc) = dij . (3)

Whent > tc, the two spheres intersect on a circleC(t). All these circles, fromtc to t , lie on a
surface of revolutionS(t), bounded byC(t). S(t) defines the growing interface between the
two growing bubbles. Ast increases,S(t) keeps increasing for 0< α 6 1, whereas it closes
if α > 1. Figure 3 illustrates two situations at different times for the exponentsα = 1

2 and
α = 1. The growing interface is finite (elliptic) ifα > 1.

The picture (figure 3) is readily generalized to any number of spheres, nucleated at random
times and growing according to the same law (equation (2)). This set of nucleation centres
and times, with a growth law, entirely defines the tessellation, the neighbourhoods, and the
shape of the interfaces. It also defines the times of contact, which determine the porosity of
the Kerroc.
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Figure 3. Two growing bubbles and their interface. The growth exponent isα = 1 (left, Johnson–
Mehl model) andα = 1

2 (right, Laguerre model). At time 1, the bubbles are separated. At time 2,
they have one point of contact(t2 − tc). An interface then begins to grow.

Generalized Voronöı tessellations have been used extensively in metallurgy, geography
or ecology. Growth inα = 1

2 produces the Laguerre tessellation [5, 6] with planar interfaces;
growth in α = 1, leads to the (Avrami–) Johnson–Mehl tessellation [5] with hyperboloid
interfaces.

These tessellations are easily obtained from geometrical arguments, with a faster algorithm
than the pixel growth technique [5]. The tessellation is a shortcut to obtain the final structure,
given the structure at some time. The final structure gives the final bond network, as the different
contact times are directly computed from the initial packing of spheres by tessellation. This
initial packing has to be chosen carefully, since the evolution of our forming form (back- and
forwards in time) isdeterministic.

3. Sequence of contact times

The sequence of contact times can be computed by the tessellation technique, given the structure
of the foam at an early stage of expansion, before any contact is established between the bubbles
(i.e. an initial distribution of spheres centres and radii or of their nucleation times), and a growth
law (equation (2)) (figure 4 up-left image). The clock is started at timet = 0 of the first contact.
(Bubbles to be nucleated aftert = 0 can be represented in the initial distribution by negative
radii.) At each contact time, a new link is added to the bond network, linking the centres
of bubbles in contact, dual of the tessellation. The bond network is built up in time, in a
deterministic fashion, by the tessellation. Specifically, one obtains the development on the
connectivity of the network, fromn(t = 0) = 0 tonf , and the time at which the bond network
percolates. The percolation transition is a dynamic process here.

The number of contacts per bubble or connectivityn(t) is critical for the properties of the
material (thermal, resistivity, porosity,. . . ). Hereafter, we will discuss only 2D foams, which
can be visualized readily (figures 2 and 4). The same algorithm applies to 3D foams, and
above.

The percolation analysis is conducted each time a new bound is set. We use a Hoshen–
Kopelman algorithm [7] adapted for random triangulation networks. We compute thereduced
average sizeof the clusters which diverges at the percolation threshold. The percolation time,
tp, and the critical concentration (per cent of bonds set att = tp) are determined when one
reaches the largest value for thereduced average size.

The main characteristic features ofn(t) that we develop in this paper, (figure 5) are:
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Figure 4. Build-up of the bond network. Top left: initial structure, before any contact between
bubbles. Tessellation of this structure yields successive contact times, and the network of bubbles
in contact with its connectivityn(t) as it develops in time.

(i) A power law behaviour (exponentβ) of the connectivity before having two contacts per
bubble.

(ii) The final connectivitynf =
∑

Ncells ni/N of the bubbles whereni is the number of
neighbours of the bubblei.

(iii) The bond percolation timetp of the network.

(iv) The critical bond concentration,cd , when the bonds are set dynamically according to the
sequence of contact times.

(v) And the critical bond concentration,ct , when the bonds are set in a random order.

In our system, the porosity is closed beforetp, and open afterwards. The final connectivity,
nf , is not a free parameter as it is always equal to six in 2D [8]. The second moment of the
number of sides distribution,µ2 = (

∑
Ncells n

2
i /N

2) − (nf )2 (topological disorder of the
network), will be our topological characteristic.
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Figure 5. Example of the number of contacts versus the time of growth witht = 0 for the first
contact (Poissonian initial condition R2 cf section 4). From the tested samples, we have found a
power law (exponentβ) describingn(t) before percolation. The percolation timetp is determined
with a modified Hoshen–Kopelman algorithm.

4. Results

In this section, we present results for very different conditions of nucleation. We have taken
a limited number of cases in order to see the influence of the nucleation times and of the
nucleation position distributions. More extensive studies under various conditions of growth
with their fine interpretation are left for forthcoming papers.

The initial conditions are set with the generation of packing of circles. The distribution of
radii defines the nucleation times distribution through equation (2). The positions distributions
will depend on the nucleation time distributions, on the strategy to generate the packing and
on the final compaction of the packing. We have considered two mains categories of packing:
four random packings (in positions and/or size of the circles) and two ordered (triangular and
square) packings of monodisperse circles with a spatial noise added to the circles centres. For
each packing, we have the same number of cells (N = 5000) that gives the same average area
per cell at the end of the growth. We have computed 20 runs for each packing in order to
improve the statistic.

The four random packings (figure 6) correspond to:

(R1) A Poissonian distribution of points. The nucleation times of the bubbles are all
synchronized. There is no correlation between points.

(R2) A random sequential adsorption (RSA) packing with monodisperse circles. The nucleation
times are again all synchronized. The compacity of the system is 50%. A correlation
between the positions is now introduced, because a new circle can be added to the packing
only in a region where there is enough place left.

(R3) A random sequential adsorption packing with circles radii chosen to simulate a constant
rate of nucleations in time. The circles positions have some correlations for reasons similar
to R2. The circles are generated starting from a maximum radius and then circles are added
with decreasing radii.

(R4) A random sequential adsorption packing with circles radii chosen to be representative of
the Kerroc case. Here, the radius of each new circle is chosen randomly between zero and
a maximum value,Rmax. We put the circle at a random place. If it does not intercept any
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Figure 6. Six samples of circles packing. They represent the initial conditions of the growth, with
different nucleation properties. We have a Poissonian (R1), a RSA (R2), a constant nucleation rate
(R3) and a Kerroc-type (R4), for the disordered circles packings and a square (O1) and a hexagonal
(O2) distribution for the ordered circles packings.

of the other circles, it is added to the packing. If it intercepts, we reject it and we try a
new radius and a new position. The positions and the radii are correlated here. We have
increased and decreased the correlation in increasing (R4+) and decreasing(R4−) Rmax.
Rmax is 0.08 of working space which is a square of 1× 1 and for R4+, we have taken
Rmax= 0.15 and for R4−, Rmax= 0.05. The case R1 is the limit case forRmax= 0.0.

The two ordered packings (figure 6) are:

(O1) A square packing of equal circles where a small noise(rx, ry) is applied to the positions of
the circles centre(xi, yi). rx andry are two independent random variables chosen between
±rmax. rmax is much smaller than the crystallographic distance of the lattice.

(O2) A hexagonal packing of equal circles with the same type of noise than in O1.
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Figure 6. (Continued)

Figure 7 reports examples of the connectivity of the packings with the Laguerre growth
(r ∼ t1/2). The square packing connectivity exhibits a step that can be explained by
two characteristic times: the connection of the four nearest neighbours and then the farest
neighbours. The numbers of final neighbours varies per bubble between four and eight. The
shapes of the connectivity for the others are qualitatively all the same, and the different values
for the exponentβ, the percolation timetp, the critical concentration, dynamicalcd and random
ct , are reported in table 1.

The critical concentration for the random case,ct , has been studied numerically [9] for
square(ct = 0.5), triangular (ct = 0.347 29) and random planar (ct = 0.332 96) lattices.
We can make comparison with these values and we find a good agreement† with the known
numerical values [9].

The study for planar random lattices has only been conducted in the case of tessellations
made from random distributions of points, which correspond to our R1. Here we show, in
table 1, the values for different types of lattices. The first striking result is thatct exhibits
a correlation with the topology of the lattice (figure 8). This result shows that the empirical
relation [10], defining the number of bonds per site at the percolation thresholdnc(nc = nf ct ),
has to take into account, at least, the disorder of the latticeµ2. We propose as an empirical fit
to ct (µ2) the following relation:

ct (µ2) = chexagonal
t ·

(
1− b · µ2

n2
f

)
. (4)

We haven2
f in order to have a dimensionless relation. We have takenc

hexagonal
t = 0.342 which

is our computed value for the hexagonal packing (O2). This relation describes well the results
(figure 8) with one adjustable parameter,b = 0.75(10) which sets the strength with theµ2

dependence. At this time, there is no theoretical argument supporting this relation.

† For O1, if we consider only the four nearest neighbours, we have a square lattice. These bonds represent2
3 of

the total number of bonds. This means that we have to multiply the value for the square latticect = 0.5 by 2
3 . The

corrected value is now13.
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Figure 7. The connectivity is computed for the different initial conditions (R1, R2, R3, R4, O1,
O2). (a) The random packings and (b) the ordered packings. The anisotropy of the square packing
is expressed by the intermediate step.

Table 1. The exponentβ, the lattice disorderµ2, the percolation timetp , the critical concentration,
dynamicalcd and randomct , have been averaged on 20 runs for each packing made of 5000 circles.

Packing β µ2 tp cd ct ct [9]

O1 1.9363(1) 0.89(2) 7.36e-07 0.351(6) 0.334(15)13 (cf note 3)
O2 3.013(4) 0 1.13e-06 0.422(17) 0.342(10) 0.34729
R1 0.955(2) 1.77(4) 7.00e-05 0.563(20) 0.323(16) 0.33296
R2 0.909(1) 0.64(2) 1.79e-05 0.364(17) 0.339(14)
R3 0.902(1) 1.53(4) 1.00e-05 0.366(11) 0.329(18)
R4 0.833(1) 8.5(8) 1.17e-05 0.384(25) 0.283(11)
R4− 0.849(1) 6.2(4) 1.43e-05 0.389(19) 0.301(17)
R4+ 0.840(1) 11.1(17) 9.00e-06 0.378(17) 0.260(20)

When the dynamics of the growth is considered, the critical concentration of bonds at the
percolation thresholdcd can vary much more than in the random case. The values are scattered
from 0.355 to 0.561. Thecd values are for our growth conditions and are always belowct .
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c t

Figure 8. The critical bond concentrationct is plotted versus the topological disorderµ2 (second
moment of the number of sides distribution). The line is the best fit of equation (4).

We see here that the process of nucleation and the dynamics of the foam transition affects the
percolation in a more realistic system. The percolation time from the first contact is computed
for the different cases and reported in table 1.tp fixes the timescale of the transition. The
properties of the material will change drastically during this period and remain almost the same
before and after the transition.

5. Discussion

In this paper, we have presented a model of cellular growth where the connectiivity (contacts
per cell) is known with the real time of growth. This approach characterizes, in time, the
transition from a bulk phase system to cellular pattern system. As initial conditions (packing
of circles) are set, the growth is deterministic in both directions of the time. The percolation
threshold of the system is time dependent and the dynamic of the percolation is found to follow
a power law before the percolation transition.

At first, we have shown that random percolation on random lattices depends on the
topological disorder of the lattices. We propose another simple relation (equation (4)) where the
critical concentration for a lattice is the critical concentration of the triangular lattice corrected
with the topological disorder scaled by the average connectivity of lattice. This relation needs
to be demonstrated and is left to further work.

When a lattice is built according to a physical process (bubble nucleation and growth), we
are able to know the time it takes for the system to percolate. The percolation time (from the
first contact until the percolation) sets the timescale of the transition from liquid, for instance,
to a cellular material. The percolation time and theβ exponent depends on the nucleation
conditions and on the dynamics of the bubble growth.

The exponentβ is linked to the type of sublying lattice of the circle distribution describing
our initial condition for the growth. If we consider the distances separating a circle from its
neighbours (in the Voronoı̈ sense), we have that the broadness,B, of their distribution depends
on the packing type. In our case, these distance distributions per circle are related ton(t).
A small broadnessB means that the distances between neighbouring circles are the same.
This implies that the contact times will happen in a short time. On the other hand, ifB is
wide, the contact will happen on a longer time. In this sense, we defineβ as a measure of the
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simultaneityof contacts per cell during the foam transition. Higherβ means that the contact
times are more synchronized and lowβ means that the contacts are made over a long time in a
random fashion. For our disordered samples, the randomness is on positions (R1, R2, R3, R4)
and on the nucleation times for the R4.β is found to be less than 1 (0.83< β < 1) for all our
random samples. For our ordered samples, we have perfect lattices with small disturbances
on the positions.β is found to be 3.013(4) in the hexagonal case andβ = 1.9363(1) for the
square lattice. The contacts are moresimultaneousfor O2 (β = 3.0) and decreases with the
following order O1 (1.9), R1 (0.95), R2 (0.91), R3 (0.90) and R4 (0.83). R4 has the lowest
value probably due to the combination of position and nucleation randomness.

In an attempt to interpret these values, we consider the number of contacts in terms of
distances(tα). This gives the number of contacts in terms of a metric that will be useful to
compare different growth laws (differentα). Consideringn(t1/2), the exponentsβ become
double. Now the simultaneity of contacts per cell is about six in the hexagonal packing, about
four in the square packing and less than two in disordered systems. As a conjecture, we can
say that the bubbles see ‘simultaneously’ their six neighbours in O2, four neighbours in O1
and than less than two in the random cases. The other contacts are spaced in time. Further
investigations with different packings (initial conditions) have to be performed to test this
conjecture of simultaneity.
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